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Computations in a free Lie algebra
By Hans Munthe-Kaas and Brynjulf Owren

1Department of Informatics, University of Bergen, N-5020 Bergen, Norway
2Department of Mathematical Sciences, NTNU, N-7034 Trondheim, Norway

Many numerical algorithms involve computations in Lie algebras, like composition
and splitting methods, methods involving the Baker–Campbell–Hausdorff formula
and the recently developed Lie group methods for integration of differential equa-
tions on manifolds. This paper is concerned with complexity and optimization of
such computations in the general case where the Lie algebra is free, i.e. no specific
assumptions are made about its structure. It is shown how transformations applied to
the original variables of a problem yield elements of a graded free Lie algebra whose
homogeneous subspaces are of much smaller dimension than the original ungraded
one. This can lead to substantial reduction of the number of commutator computa-
tions. Witt’s formula for counting commutators in a free Lie algebra is generalized
to the case of a general grading. This provides good bounds on the complexity. The
interplay between symbolic and numerical computations is also discussed, exempli-
fied by the new Matlab toolbox ‘DiffMan’.

Keywords: free Lie algebra; Lie group methods; numerical algorithms;
Runge–Kutta methods; differential equations; manifolds

1. Motivation and background

The aim of this paper is to discuss practical and theoretical issues related to complex-
ity, optimization and development of numerical algorithms involving computations in
a Lie algebra. We will be investigating the general case where no particular algebraic
structure is assumed, except for what is common to all Lie algebras. This leads to the
concept of a free Lie algebra (FLA). Most of the applications we discuss come from
recently developed methods for the numerical solution of differential equations, in
particular methods that are defined for problems in which the exact solution evolves
on a manifold. A major cost of these algorithms involves the evaluation of Lie brack-
ets, or commutators. We will discuss ways of reducing the number of commutator
computations in various situations. Furthermore, we want to provide good upper
bounds on the number of commutators. For this purpose a generalized version of
the Witt formula is developed. Through the examples of the paper, we will see the
usefulness of having software tools involving both numerical and symbolic compu-
tations. We will see that symbolic computations can aid a numerical computation,
and, vice versa, that numerical computations can aid symbolic computations. Many
authors have been discussing various computational issues related to Lie algebras. A
useful source to the state of the art in this subject can be found in Jacob & Koseleff
(1997), Koseleff (1993) and Reutenauer (1993).

The paper is organized as follows. In the rest of this section we will give some
mathematical background theory and briefly survey various numerical algorithms
involving computations in Lie algebras. In §§ 2 and 3 we will introduce FLAs and
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958 H. Munthe-Kaas and B. Owren

develop new tools for counting commutators, through generalizations of the Witt
formula. In § 4, various applications are discussed, where the introduction of graded
bases for the construction of Runge–Kutta (RK) methods on manifolds is studied.
We obtain substantial reductions in the number of commutator computations in the
case of implicit RK methods for Lie-type equations. For general-type equations we
obtain significant savings in the case of low–medium-order explicit RK methods,
while for high-order explicit methods, the graded basis does not result in savings.

(a) Differential equations on manifolds

Consider initial-value problems of the form
ẏ = F (t, y), y(0) = y0 ∈M, F : R×M → TM, (1.1)

whereM is a manifold and F is a time-dependent vector field; thus for each t, F (t, ·) ∈
X(M), the linear space of smooth vector fields on M . A Lie algebra structure can be
imposed on X(M) by using the Lie–Jacobi bracket [· , ·]: X(M)×X(M)→ X(M). We
define the bracket in terms of coordinates x1, . . . , xd. If X,Y, Z ∈ X(M) are vector
fields with components Xi, Y i, Zi and Z = [X,Y ], then

Zi =
d∑
j=1

(
Xj ∂Y

i

∂xj
− Y j ∂X

i

∂xj

)
.

In general, a Lie algebra g is a linear space equipped with a bilinear bracket such
that for a, b, c ∈ g we have

[a, b] = −[b, a], (1.2)
0 = [a, [b, c]] + [b, [c, a]] + [c, [a, b]]. (1.3)

The flow of a vector field X ∈ X(M) is a mapping exp(X) from some open set
D ⊆ M into M defined as follows: denote by u(t) the solution of the differential
equation

u′ = X(u), u(0) = p;
then exp(X)(p) = u(1). Many numerical methods that are used to solve (1.1) are
based on compositions of maps that are either flows of vector fields or can be well
approximated by such flows. This makes it interesting to study compositions of flows

exp(X1) ◦ exp(X2) · · · ◦ exp(Xµ). (1.4)
In the construction and analysis of such methods, one may proceed by invoking
the Baker–Campbell–Hausdorff (BCH) formula. If X and Y are two vector fields in
X(M), one has

exp(X) ◦ exp(Y ) = exp(Z), Z ∈ X(M).
The formula for Z can be given in terms of iterated Lie–Jacobi brackets as follows
Varadarajan (1984, pp. 114–121):

Z =
∞∑
n=1

cn, c1 = X + Y,

(n+ 1)cn+1 = 1
2 [X − Y, cn] +

[n/2]∑
p=1

B2p

(2p)!

∑
[ck1 , [. . . [ck2p , X + Y ] . . . ]], n > 1,


(1.5)
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Computations in a free Lie algebra 959

where Bj is the jth Bernoulli number. The second sum is over all positive integers
k1, . . . , k2p such that k1 + · · ·+ k2p = n.

By themselves, the formulae (1.5) are complicated, and, in general, in the appli-
cations described above they need to be applied recursively since there are generally
more than two elements in the composition. Additional difficulties arise from the fact
that the iterated brackets which occur are not generally independent since X(M) is a
Lie algebra and therefore the brackets obey the identities (1.2) and (1.3). Typically,
the vector fields Xi, whose flows appear in the composition (1.4), will depend on a
step size h in such a way that Xi = O(hqi) where qi > 1 as h→ 0. It is clear that if
the vector fields A = O(hqA) and B = O(hqB ), then [A,B] = O(hqA+qB ). When the
composition occurs as a part of an integration method having order of consistency p,
we may discard all terms in the BCH formula that are O(hp+1). Obviously, we need
a systematic way of identifying these terms, and this problem will be addressed in
the sequel.

(b) Methods based on composition and splitting

When a numerical method is used to approximate the solution of (1.1) at t = h, it is
common to represent it by a map ψh,F called the h-flow of the method. We write y1 =
ψh,F (y0). By using backward error analysis (Hairer 1994; Baltzer 1993; Reich 1996),
one can in some important cases, at least formally, associate the h-flow of a method
with the flow of a perturbed vector field F̃h such that ψh,F = exp(hF̃h). A popular
way (Yoshida 1990; Sanz-Serna & Calvo 1994) of constructing high-order numerical
integration methods is to compose h-flows

ψh,F = ψ1
h1,F ◦ · · · ◦ ψµhµ,F

of different methods. In particular, this is useful when the flow of F is known to
exhibit certain properties, for instance, that it belongs to a known subgroup of the
diffeomorphisms of M . Thus the elements of the composition can be chosen accord-
ingly, as members of the same subgroup. For instance, when F is a Hamiltonian
vector field, its flow is known to be symplectic. It may therefore be desirable to
impose conditions on the coefficients of the methods involved in the composition
such that each ψhi,F is a symplectic mapping.

A related type of integration method is the one based on splitting. In this case,
it is assumed that the vector field is decomposed into a sum F = F1 + · · · + Fs,
where the flow of each component is, in some sense, easier to compute than that of
F . Then, the flow of F can be approximated by composing the (approximate) flows
of the Fi. For instance, for the splitting F = F1 + F2, the composition exp(1

2hF1) ◦
exp(hF2) ◦ exp(1

2hF1) is symmetric and of second order (Strang 1968).

(c) Generalized RK methods

Iserles (1984) suggested an approach for the solution of linear differential equations
based on the Fer expansion (Fer 1958), in which the approximation is obtained by
multiplication of matrix exponentials. Likewise, the integration methods proposed
by Crouch & Grossman (1993) apply composition of flows of various vector fields.
More precisely, it is assumed that there is a set of smooth vector fields, E1, . . . , Ed
on M , such that (1.1) can be written in the form

ẏ =
∑
i

(fi(y)Ei)(y), fi : M → R.
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960 H. Munthe-Kaas and B. Owren

The stages are defined through the compositions

Yi = exp(haisFs) ◦ · · · ◦ exp(hai1F1)(y0), 1 6 i 6 s, (1.6)

where the vector fields Fj are defined as frozen at Yj with respect to the frame vector
fields, i.e.

Fj : y 7→
∑
i

(fi(Yj)Ei)(y).

The numerical solution is propagated by means of a similar composition:

y1 = exp(hbsFs) ◦ · · · ◦ exp(hb1F1)(y0). (1.7)

Recently, Iserles & Nørsett (1997) proposed a type of method to solve the linear
matrix equation

ẏ = a(t)y, y(t), a(t) ∈ Rn×n. (1.8)

The methods make use of the Magnus expansion (Magnus 1954). In some neighbour-
hood of a point y0 ∈ Rn×n, the solution y of (1.8) can be represented uniquely by
a function Ω : [0, T ] → Rn×n by means of the relation y(t) = exp(Ω(t))y0. Magnus
obtained the following expansion for the function Ω(t):

Ω(t) =
∫ t

0
a(τ) dτ + 1

2

∫ t

0

[
a(τ),

∫ τ

0
a(σ) dσ

]
dτ

+ 1
4

∫ t

0

[
a(τ),

∫ τ

0

[
a(σ),

∫ σ

0
a(ρ) dρ

]
dσ
]

dτ

+ 1
12

∫ t

0

[[
a(τ),

∫ τ

0
a(σ) dσ

]
,

∫ τ

0
a(σ) dσ

]
dτ + · · · . (1.9)

Here the bracket denotes the matrix commutator, [A,B] = AB −BA.
Iserles & Nørsett (1997) discretize the integrals in (1.9) by means of a Gauss

quadrature formula to obtain the approximations Ω1, Ω2, . . . , and finally they com-
pute yn = exp(Ωn)yn−1. We note in passing that if a(t) belongs, for all t, to some
subspace g ⊂ Rn×n, which is closed under commutation, then there exists a certain
submanifold G of Rn×n on which the solution y(t) evolves. This submanifold can be
characterized locally as exp(g) ·y0. By construction, the methods proposed by Iserles
& Nørsett (1997) will also produce approximations that belong to G.

Again, we will be concerned with the complexity of the expression (1.9), which
apparently becomes even more complicated after discretization with a quadrature
rule. Iserles & Nørsett (1997) developed a theory involving a certain type of rooted
trees for the purpose of analysing the expressions in (1.9). It is remarkable that
in specific examples, starting from hundreds of commutator terms, after taking into
account the order (in h) of the various terms, the skew-symmetry and Jacobi identity
obeyed by the commutator and the reversibility of the Gauss formula, only a few
terms remain. For instance, they show that only six commutators are necessary to
obtain methods of consistency order 6 (Rasmussen 1997). This case will be studied
using a different framework in § 4 b.

Another generalization of RK methods that can be used essentially for the same
type of problems as the Crouch–Grossman methods is the methods of Munthe-Kaas
(1998, 1999), subsequently denoted as RKMK methods. The methods are based on
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canonical coordinates of the first kind. To describe these methods in more detail, it
is necessary first to introduce a little notation. Let M be a manifold, G a Lie group
and g its Lie algebra. Assume that Λ : G ×M → M is a left Lie group action on
M , and let λ : g ×M → M be given as λ(v, y) = Λ(exp(v), y). The methods of
Munthe-Kaas (1999) can be applied to problems of the form

y′ = F (y) = λ∗(f(y))(y), (1.10)

where f : M → g is assumed to be autonomous, simply for notational convenience.
Here λ∗ denotes the derivative map

λ∗(v)(p) =
d
dt

∣∣∣∣
t=0

λ(tv, p).

Set λp(u) = λ(p, u), p ∈M , u ∈ g. The main idea behind this type of method is that
there is a vector field on g, f̃ ∈ X(g), which is λp-related to the original vector field
F . Moreover, there is a generic way of constructing f̃ , namely

f̃(u) = dexp−1
u (f ◦ λp(u)). (1.11)

Hence, solving (1.10) with initial value y(0) = p on M is locally equivalent to solving
u′ = f̃(u) with initial value u(0) = 0 on g in the sense that y(t) = λp(u(t)), 0 6 t 6
t∗. The RKMK methods work by applying a classical RK method to the problem
u′ = f̃(u) and then transforming back to M via the map λp, i.e. yn+1 = λyn(un+1)
in each step, taking p = yn.

For each u ∈ g, the map dexpu (as well as dexp−1
u ) is a linear map from g to g,

and one has the expansions

dexpu(v) = v + 1
2 [u, v] + · · ·+ 1

(q + 1)!
[u, [· · · , [u,︸ ︷︷ ︸

q times

v]]] + · · · (1.12)

dexp−1
u (v) = v +B1[u, v] + · · ·+ Bq

q!
[u, [· · · , [u,︸ ︷︷ ︸

q times

v]]] + · · · , (1.13)

where the Bq are the Bernoulli numbers. The evaluation of dexp−1
u in a practical

implementation of RKMK methods may seem a little awkward, but thanks to the
choice of reference point (p = yn) in each step, it is actually sufficient to retain only
the first q terms of (1.13) in the case that a qth-order RK method is applied to the
vector field (1.11). We shall see in §§ 4 a, b that it is possible to reduce substantially
the computational cost even further. We conclude the discussion of RKMK methods
by rewriting an algorithm given in Munthe-Kaas (1999):

ui =
∑
j

aij k̃j ,

ki = hf(λ(ui, y0)),

k̃i = dexp−1
ui (ki),

 i = 1, . . . , s,

v =
s∑
i=1

bik̃i,

y1 = λ(v, y0).


(1.14)
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962 H. Munthe-Kaas and B. Owren

It is understood in the above algorithm that an approximation is used for dexp−1
ui (ki)

such that rather than computing this quantity exactly, it suffices to employ an
approximation such that the computed k̃i satisfies k̃i = dexp−1

ui (ki)+O(hq+1), where
q is the order of the integration method. Note also that the RKMK algorithm is
explicit if aij = 0 whenever i 6 j.

2. Free Lie algebras

As a tool for simplifying expressions involving commutators, we introduce the concept
of an FLA. Given an arbitrary index set I, in the applications of this paper I is
either finite or countably infinite. The following definition is equivalent to the one
in Varadarajan (1984).

Definition 2.1. A Lie algebra g is free over the set I if

(i) for every i ∈ I there corresponds an element Xi ∈ g; and

(ii) for any Lie algebra h and any function i 7→ Yi ∈ h, there exists a unique Lie
algebra homomorphism π : g→ h satisfying π(Xi) = Yi for all i ∈ I.

Let S = {Xi : i ∈ I}, S ⊂ g. The algebra g can be thought of as being the set of
all (formal) commutators of Xi. To simplify the language, we will say that g is the
FLA generated by S.

Definition 2.1 is a standard-type free construction in category theory. It is well
known that this type of construction is valid for any set, and that the object g is
unique, up to isomorphisms (Barr & Wells 1990). One can also show that g contains
no proper subalgebra containing S.

In category theory, g is said to be a universal object, i.e. it contains a structure that
is common to all Lie algebras, but nothing else. Furthermore, computations in g can
be applied in any concrete Lie algebra h via the homomorphism π. More concretely,
it is useful to think of g as being a ‘symbolic computation engine’, which can exploit
the algebraic manipulations defined in equations (1.2) and (1.3). A computation
can be done in g, yielding a (formal) linear combination of brackets. The resulting
expression can later be applied to a concrete Lie algebra by replacing each (abstract)
Xi with a concrete Yi, where Yi could, for instance, be vector fields or matrices. An
FLA is an invaluable computational tool in any computation of Lie algebras. In § 4
we will see applications of an FLA module in the Matlab toolbox DiffMan.

Computationally, it is useful to represent an FLA g via a (vector-space) basis.
There are various ways of constructing a basis for g. Here we shall consider a pro-
cedure based on Hall sets (Bourbaki 1975, p. 132). Such a set, which we denote by
H, can be given a total ordering defined as follows: first we assume that S ⊂ H
and define recursively the length l(·) of members of H. Let l(X) = 1 if X ∈ S. If
w 6∈ S is a member of H, then it is of the form w = [u, v] with u, v ∈ H and we
set l(w) = l(u) + l(v). We require for the ordering of H that u < v if l(u) < l(v).
Elements of the same length are ordered internally as we please, typically by some
lexicographical rule. Elements of length 2 are included in the Hall set if they are of
the form [X,Y ], X,Y ∈ S and X < Y . Elements of length greater than or equal to
3 are included if and only if they are of the form [u, [v, w]], u, v, w ∈ H, [v, w] ∈ H,
v 6 u < [v, w].
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Example 2.2. If S = {X1, X2, X3}, we find the following Hall basis consisting of
elements with length 6 4:

X1 X2 X3

[X1, X2] [X1, X3] [X2, X3]

[X1, [X1, X2]] [X1, [X1, X3]] [X2, [X1, X2]] [X2, [X1, X3]]
[X2, [X2, X3]] [X3, [X1, X2]] [X3, [X1, X3]] [X3, [X2, X3]]

[X1, [X1, [X1, X2]]] [X1, [X1, [X1, X3]]] [X2, [X1, [X1, X2]]]
[X2, [X1, [X1, X3]]] [X2, [X2, [X1, X2]]] [X2, [X2, [X1, X3]]]
[X2, [X2, [X2, X3]]] [X3, [X1, [X1, X2]]] [X3, [X1, [X1, X3]]]
[X3, [X2, [X1, X2]]] [X3, [X2, [X1, X3]]] [X3, [X2, [X2, X3]]]
[X3, [X3, [X1, X2]]] [X3, [X3, [X1, X3]]] [X3, [X3, [X2, X3]]]
[[X1, X2], [X1, X3]] [[X1, X2], [X2, X3]] [[X1, X3], [X2, X3]].

It is already indicated by the example that the number of elements in the Hall
basis with precisely n iterated brackets increases very fast. The precise result of the
dimension νn of the corresponding subspaces of a finitely generated FLA is given by
Witt’s formula (Bourbaki 1975)

νn =
1
n

∑
d|n

µ(d)sn/d, (2.1)

where s is the number of generators, and where the sum is over all integers d that
divide n. The function µ : N → {−1, 0, 1} is defined as follows. If d has a prime
factorization,

d = pn1
1 pn2

2 . . . pnqq , ni > 0,

then

µ(d) =


1, for d = 1,
(−1)q, if all ni = 1,
0, otherwise.

(2.2)

We illustrate the fast growth of the dimensions by giving νn for n 6 10 with three
generators as in example 2.2:

n 1 2 3 4 5 6 7 8 9 10
νn 3 3 8 18 48 116 312 810 2184 5880 .

3. The dimension of graded FLAs

Witt’s formula (2.1) counts the number of commutators of a given length. For the
study of the complexity of numerical computations, it is important to derive similar
counting formulae where the commutators are ordered according to some other size
measures. For example, if A,B are two matrices depending on a small parameter
h as A = O(hqA) and B = O(hqB ), then [A,B] = O(hqA+qB ). We might want to
count all commutators up to a given order O(hq). To model this situation we define
a grading function w on an FLA as follows.

(i) On the generating set S = {Xi : i ∈ I}, the function w is given as

w(Xi) = wi for all Xi ∈ S,

Phil. Trans. R. Soc. Lond. A (1999)
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where wi are arbitrarily chosen positive integer grades.
(ii) On the Hall set, w is extended by additivity

w([u, v]) = w(u) + w(v) for all [u, v] ∈ H.
This splits H in a disjoint union H =

⋃∞
n=1Hn, where Hn = {h ∈ H : w(h) = n}.

Similarly, the FLA g splits into a direct sum of subspaces

g =
∞⊕
n=1

gn, where gn = span(Hn).

Hence g becomes a so-called graded algebra. Let νn denote the number of elements in
Hn. Evidently νn = dim(gn). These numbers are called the homogeneous dimensions
of the grading. We will prove several important results about νn.

Theorem 3.1. Let g be the graded FLA generated by s elements X1, . . . , Xs with
a grading w defined by assigning positive integer grades wi = w(Xi) for all i. Let

p(T ) = 1−
s∑
i=1

Twi (3.1)

and let {λi}mi=1 be the roots of p, where m = maxiwi. Then

dim(gn) = νn =
1
n

∑
d|n

( m∑
i=1

λ
−n/d
i

)
µ(d), (3.2)

where the first sum ranges over all integers which divide n, and µ is the Möbius
function defined by (2.2).

Note that when wi = 1, this result reduces to the classical Witt formula.
It might be useful to have an explicit expression for the sum of the inverse powers

of the roots. We write the polynomial in (3.1) as

p(T ) = 1−
s∑
i=1

Twi = 1−
m∑
j=1

rjT
j

and form the inverse of the companion matrix of p(T ). This yields

C =


1

1
1

1
rd · · r2 r1

 ,

and hence
m∑
i=1

λ−ji = tr(Cj).

Theorem 3.1 can also be extended to the following important infinite cases.

Theorem 3.2. Let g be the graded FLA generated by a countable set of elements
X1, X2, . . . with grades wi = w(Xi) for all i. Suppose that the formal sum

1−
∞∑
i=1

Twi
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Computations in a free Lie algebra 965

adds up to a rational function r(T ) = p(T )/q(T ). Let the roots of p and q be denoted
λ1, . . . , λm and γ1, . . . , γm̃ respectively. Then νn is given as

νn =
1
n

∑
d|n

( m∑
i=1

λ
−n/d
i −

m̃∑
i=1

γ
−n/d
i

)
µ(d). (3.3)

In some cases two different graded FLAs may have homogeneous dimensions νn
and ν′n which are identical for all sufficiently large n.

Corollary 3.3. Let g and g′ be two graded FLAs with corresponding rational
functions r(T ) and r′(T ) as given in theorem 3.2. Suppose that r and r′ are related
as follows:

r′(T ) =
N∏
n=1

(1− Tn)αnr(t), (3.4)

where the αn are arbitrary integers (possibly negative). Then

ν′n = νn + αn, n 6 N,
ν′n = νn, n > N.

}
(3.5)

This corollary gives an interesting alternative proof of a result of McLachlan (1995).
Let g be the graded FLA generated by an infinite number of elements X1, X2, . . .
such that w(Xi) = wi = i. Let g′ be the FLA generated by two elements Y1, Y2 with
grades 1. Then the result of McLachlan shows that the corresponding homogeneous
dimensions satisfy νn = ν′n for n > 1. Note that the rational functions of the two
cases are

r(T ) =
1− 2T
1− T and r′(T ) = 1− 2T, thus r′(T ) = (1− T )r(T ),

and McLachlan’s result follows from (3.5).
In the rest of this section we will prove these results. This may be skipped without

loss of continuity.
For the proof we need the concepts of a free associative algebra (FAA) and the

universal enveloping algebra of a Lie algebra.

Definition 3.4. For any Lie algebra, g, there is a unique pair (C, π) called its uni-
versal enveloping algebra (UEA). C is an associative algebra, and π a linear mapping
from g to C such that

(i) π[g] generates C;
(ii) π([X,Y ]) = π(X)π(Y )− π(Y )π(X) for all X,Y ∈ g; and

(iii) If U is any associative algebra and ξ a linear map from g to U , then there is a
homomorphism ξ′ from C to U such that ξ(X) = ξ′(π(X)) for all X ∈ g.

We shall not be concerned with the construction of a UEA (see Varadarajan 1984;
Bourbaki 1975). Here, we shall only need a result concerning the UEA which is
normally stated as a corollary to the celebrated Poincaré–Birkhoff–Witt (PBW) the-
orem.
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Theorem 3.5 (PBW). Let {ei}∞i=1 be a basis for a Lie algebra g. Then the UEA
of g has a basis of the form

{π(ei1) · π(ei2) · · ·π(eis), i1 6 i2 6 · · · 6 is, s > 1}.
Remark 3.6. The linear map π is injective on g, hence one may think of g as being

‘contained’ in the UEA (C, π) and where the bracket is defined as the commutator
in (the associative algebra) setC.

In an important construction to be made later, π is actually given as the identity
map, and in this case the basis for the UEA is simply

{ei1 · ei2 · · · eis , i1 6 i2 6 · · · 6 is, s > 1}.
Definition 3.7. The free associative algebra (FAA) generated by a set S = {Xi :

i ∈ I} is an associative algebra B ⊃ S such that

(i) S generates B; and

(ii) if U is any associative algebra containing S, then there is a unique homomor-
phism ξ from B to U such that ξ(Xi) = Xi for all i ∈ I.

Now, let B be the FAA generated by some set S = {Xi : i ∈ I}. We define a
bracket on B by [u, v] = uv − vu for any u, v ∈ B. This construction yields a Lie
algebra BL and we denote by g the smallest subalgebra of BL which contains the set
S. We find the following important theorem in Varadarajan (1984, theorem 3.2.8,
p. 174)

Theorem 3.8. The Lie algebra g constructed above is an FLA. Moreover, (B, Id)
is the universal enveloping algebra of g.

We shall need to make the FAA B into a graded algebra. That is, for each integer
n > 0 there is a homogeneous subspace Bn of B with B0 = R,

B =
∞⊕
n=0

Bn, and Bn · Bm ⊆ Bn+m for all m,n > 0.

The elements of ∪∞n=0Bn are called homogeneous and those of Bn are called homo-
geneous of degree n.

In our case, we define a grading in the following way. Set B0 = R. Assign to each
generator Xi, i ∈ I, a positive integer grade wi = w(Xi). Then define, for any n > 1,

Sn =
⋃
`>1

{
Xi1 ·Xi2 · · ·Xi` :

∑̀
j=1

w(Xij ) = n, ij ∈ I for all j
}

(3.6)

and set Bn = span(Sn). We have by construction that g ⊂ B, hence it makes sense
to define the subspaces gn = g ∩ Bn of g for all n > 0. In fact, it is possible to
decompose g into a direct sum of the gn. The focus of our interest is the dimensions
νn = dim(gn), n > 1, of the homogeneous subspaces of the FLA.

Proof of theorem 3.1. The main idea of the proof is to count the dimension of Bn,
the subspace of homogeneous elements of degree n, in two different ways: first, by
considering B as the UEA of g, and then by considering B as the FAA generated by
X1, . . . , Xs (cf. theorem 3.8). Let bn = dim(Bn) and let

g(T ) =
∞∑
n=0

bnT
n
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be the generating function.
(i) B as a UEA. Since g is a direct sum of the subspaces gn, we can find a basis for

g consisting of homogeneous elements. We order the basis according to the degree of
the elements, i.e. let e1,1, . . . , e1,ν1 be the basis elements of degree 1, e2,1, . . . , e2,ν2

those of degree 2, etc. In view of the PBW theorem, a basis for the UEA is given as
the terms of the expression

∞∑
r=0

(e1,1)r ·
∞∑
r=0

(e1,2)r · · ·
∞∑
r=0

(e1,ν1)r · · ·
∞∑
r=0

(en,1)r · · ·
∞∑
r=0

(en,νn)r · · · .

Thus, to find the generating function g(T ), it suffices to replace the basis elements
ei,j of g with T i in the above expression. We obtain

g(T ) =
∞∏
n=1

( ∞∑
r=0

Tnr
)νn

=
∞∏
n=1

(1− Tn)−νn .

(ii) B as an FAA. First define as r` the number of wi that are equal to `, and let
m = maxiwi as before. B is generated (as an FAA) by the set S = {X1, . . . , Xs}.
To find the dimension of Bn we use the basis defined by (3.6). Clearly, any element
of Sn with n > 0 can be factored uniquely into u · v where u ∈ Sk for some k < n
and v ∈ S with w(v) = n − k. We therefore obtain the following recursion formula
for bn = dim(Bn):

bn = r1bn−1 + r2bn−2 + · · ·+ rmbn−m, n > 0,
b0 = 1, bi = 0 for i < 0.

}
(3.7)

Define the polynomial

p(T ) = 1−
m∑
`=1

r`T
` = 1−

s∑
i=1

Twi .

We compute

g(T ) · p(T ) =
( ∞∑
n=0

bnT
n

)(
1−

m∑
`=1

r`T
`

)
=
∞∑
n=0

(
bn −

m∑
`=1

r`bn−`

)
Tn,

again assuming bi = 0 for i < 0. From (3.7) we therefore obtain g(T ) ·p(T ) = b0 = 1,
and hence we conclude that

g(T ) =
1

p(T )
=

1
1−∑s

i=1 T
wi
.

Now it remains only to equate the expressions for g(T ) from (i) and (ii) and solve
for the numbers νn, i.e. we must solve the equation

g(T ) =
∞∏
n=1

(1− Tn)−νn =
1

p(T )
=

1
1−∑s

i=1 T
wi
. (3.8)

Taking logarithms of both expressions and using the expansion

log(1− x) =
∞∑
j=1

xj

j
,
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we obtain
∞∑
n=1

νn

∞∑
i=1

1
i
T in =

∞∑
j=1

1
j
ajT

j ,

where the coefficients aj will be computed later. We equate the terms of power k to
obtain ∑

n|k
νn
n

k
=

1
k
ak, for all k > 0.

It follows from the Möbius inversion formula (Bourbaki 1975, p. 176) that

νn =
1
n

∑
d|n

µ(d)an/d.

Finally, we compute aj . Write p(T ) =
∏m
i=1(1− T/λi), where the λi are the roots of

p. Then

log(p(T )) =
m∑
i=1

log
(

1− T

λi

)
=
∞∑
j=1

1
j

( m∑
i=1

λ−ji

)
T j .

Thus aj =
∑m
i=1 λ

−j
i . This concludes the proof of the theorem. �

Proof of theorem 3.2. The modifications to the above proof needed to get this
result are minor. In (3.7) the recursion becomes infinite. Let r(T ) = p(T )/q(T ) be
as in theorem 3.2. Using the recursion it is simple to show that g(T )p(T )/q(T ) = 1.
Hence equation (3.8) becomes

r(T ) =
p(T )
q(T )

=
∞∏
n=1

(1− Tn)νn . (3.9)

The result now follows by taking logarithms and using the Möbius inversion formula.
�

Proof of corollary 3.3. This result follows immediately by applying relation (3.4)
in equation (3.9). �

4. Applications

(a) Computation of the BCH formula

We will let the BCH formula (1.5) serve as our first example of a computation in
an FLA. DiffMan is a publicly available Matlab toolbox found at

http://www.math.ntnu.no/num/diffman/.

In this toolbox most of the integrators described in § 1 are found. In DiffMan, we
find an FLA module, lafree. The commands given below reflect the basic operations
of definition 2.1.

>> fla = lafree({[p, q], [w1, w2, . . . , wp]}).
Generate an FLA from p symbols with grades w1, w2, . . . , wp. All terms of total
grade greater than q are set to zero.
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function [z] = bch(q)
% coefficients of s-stage qth order Gauss-Legendre RK
[A, b, s] = glrk(q);
fla = lafree({[2, q], [1, 1]});
x = basis(fla, 1); y = basis(fla, 2);
u = zeros(fla, s); k = u;
% fixed point iteration, q times
for j = 1 : q, for i = 1 : s,

u(i) = y + A(i, 1 : s) ∗ k;
k(i) = dexpinv(u(i), x, j); % approx up to order j

end; end;
z = y + b ∗ k;

return;

>> format rat; z = bch(6)
z = [1] + [2] + 1/2*[1,2] + 1/12*[1,[1,2]] - 1/12*[2,[1,2]]

- 1/24*[2,[1,[1,2]]] - 1/720*[1,[1,[1,[1,2]]]]
- 1/180*[2,[1,[1,[1,2]]]] + 1/180*[2,[2,[1,[1,2]]]]
+ 1/720*[2,[2,[2,[1,2]]]] - 1/120*[[1,2],[1,[1,2]]]
- 1/360*[[1,2],[2,[1,2]]] + 1/1440*[2,[1,[1,[1,[1,2]]]]]
+ 1/360*[2,[2,[1,[1,[1,2]]]]] + 1/1440*[2,[2,[2,[1,[1,2]]]]]
+ 1/240*[[1,2],[2,[1,[1,2]]]] + 1/720*[[1,2],[2,[2,[1,2]]]]
- 1/240*[[1,[1,2]],[2,[1,2]]]

Figure 1. Computation of BCH to order q.

>> Xi = basis(fla, i).
Return the ith Hall basis element in fla. If 1 6 i 6 p, return the ith gener-
ator Xi.

>> X + Y; r ∗ X; [X, Y].
Basic computations in the FLA.

>> Z = eval(E, Y1, Y2, . . . , Yp).
If E is an element of an FLA, and Y1, Y2, . . . , Yp are the elements of any
DiffMan Lie algebra, this will evaluate the expression E, using the data-set
Y1, Y2, . . . , Yp in place of the generating set. This corresponds to the homomor-
phism π : g→ h in definition 2.1.

The computation of the BCH formula can, in principle, be done directly from
equation (1.5). We will instead show an alternative approach, based on a numerical
computation in an FLA. This is simpler to program than a recursion based on (1.5),
and serves as a simple example of using DiffMan. By differentiating the expression
exp(z(t)) = exp(tx) exp(y) with respect to t, we find

z′ = dexp−1
z (x), z(0) = y.

This equation can be integrated numerically in the FLA from t = 0 to t = 1 using,
for instance, a single step of an RK method of sufficiently high order. The implicit
Gauss–Legendre methods are useful since they are easy to generate at arbitrary high
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order; alternatively one can use an extrapolation method. The implicit RK equations
can be solved by fixed-point iteration in the FLA, until convergence. The resulting
DiffMan code is listed in figure 1.

The resulting z may now be applied to data from concrete Lie algebras using the
eval operator, or if we want to symbolically combine more than two flows, we may
apply eval on the FLA itself.

(b) Implicit RK methods for equations of Lie type

We will in this subsection consider equations of Lie type (sometimes also called
linear equations), given by (1.8) in the matrix Lie-group case, or in the general form
of (1.10) as

y′ = λ∗(f(t))(y). (4.1)

This type of equation is the manifold version of a quadrature problem. Sophus Lie
showed that it is in theory solvable by quadratures if and only if the Lie algebra
is solvable. Numerically, it is harder to solve than the quadrature problem on Rn,
since the right-hand side depends on y. On the other hand, since f only depends on
t, it is easier than the general equation (1.10). Numerical aspects of solvability are
discussed in Zanna & Munthe-Kaas (1997).

We will consider the solution of (4.1) by implicit RK methods of the form (1.14).
The fact that f only depends on t makes it possible to solve the implicit RK equations
a priori by fixed-point iteration in an FLA, as in § 4 a. We could let the function
values ki be the generators of the FLA, but since all ki are of size O(h), these
free elements all have grade 1, and this approach leads to an explosive growth of
commutators. The ‘ungraded’ line in (4.2) shows the dimension of the FLA generated
by s elements of grade 1, counting all terms with total grade less than or equal to
2s. We will show that by a change of variable we can introduce a basis with grading
1, 2, 3, . . . , s. This reduces the dimensions to those given in the row labelled ‘graded’.
Finally, it will be shown that if the basis is chosen carefully, only terms with odd
total grade will contribute. This reduces the dimensions to the numbers in the last
row:

s (stages) 1 2 3 4 5
2s (order of method) 2 4 6 8 10
dim(g) (ungraded) 1 8 196 11 464 1 256 567
dim(g) (graded) 1 4 15 55 164
dim(g) (graded, odd terms) 1 2 7 22 73

. (4.2)

All these numbers are computed from theorem 3.1.
We will use two crucial observations, introduced within a different framework by

Rasmussen (1997). Consider a single step of (1.14) from t = 0 to t = h, y0 7→ y1. The
first observation is that the elements ki are not independent, since they are samples
of the same continuous function, ki = hf(cih), where ci =

∑s
j=1aij . We will use this

to form a Taylor-series-type basis for g. Define the Vandermonde matrix

V (c) = (vij)sij=1, where vij = cj−1
i ,

and we introduce a new basis Q1, Q2, . . . , Qs as

(k1, k2, . . . , ks)T = V (c) · (Q1, Q2, . . . , Qs)T.
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From the standard theory of divided differences, we know that

Qi =
hi

(i− 1)!
f (i−1)(ξi), for some ξi ∈ (0, h).

Thus, under this change of variables, we get a graded FLA with grades 1, 2, . . . , s.
The second observation is that the problem has a time-reversal symmetry. If we

change the function f in (4.1) from f(t) to −f(h− t), we get a flow which between
t = 0 and t = h will take us back from y1 to y0. To take advantage of this symmetry,
we must use a Taylor basis centred around t = 1

2h instead of around t = 0. Thus
we let

(k1, k2, . . . , ks)T = V (c− 1
2) · (Q1, Q2, . . . , Qs)T.

Consider an integration step given for the matrix equation as y1 = exp(v)y0 and
generally as y1 = λ(v, y0), where v = v(Q1, Q2, . . . , Qs). Under the symmetry f(t) 7→
−f(h− t), the Qi change as Qi 7→ (−1)iQi. Since exp(v)−1 = exp(−v), we arrive at
the conclusion that v must have the following symmetry:

v((−1)1Q1, (−1)2Q2, . . . , (−1)sQs) = −v(Q1, Q2, . . . , Qs),
at least up to the order of the method. Hence, v depends on the free basis Q1, . . . , Qs
only through terms in the Hall set of odd grade. This reduces the dimension of the
FLA to the numbers given in the final row of (4.2).

Let aij , bj , cj be the coefficients of the s-stage order-2s Gauss–Legendre RK meth-
od. For equations of Lie type, the algorithm given in (1.14) becomes

V = (vij)sij=1, where vij = (ci − 1
2)j−1,

ki = hf(hci), i = 1, 2, . . . , s,

Qi =
s∑
j=1

(V −1)ijkj , i = 1, 2, . . . , s,

v = v(Q1, Q2, . . . , Qs),
y1 = λ(v, y0).


(4.3)

The exact form of v and the coefficients of V −1 and c can be found for methods of
arbitrary order in DiffMan. For order 2, 4 and 6, the expressions for v become

v(Q1) = Q1,

v(Q1, Q2) = Q1 − 1
12 [Q1, Q2],

v(Q1, Q2, Q3) = Q1 + 1
12Q3 − 1

12 [Q1, Q2] + 1
240 [Q2, Q3]

+ 1
360 [Q1, [Q1, Q3]]− 1

240 [Q2, [Q1, Q2]] + 1
720 [Q1, [Q1, [Q1, Q2]]].

For order 8 we get 22 terms. Note that the theory summarized in (4.2) counts exactly
how many terms we get in the expressions for v. The actual number of commutators
needed to compute v is, however, more difficult to predict in general. For order 6, we
can find v by computing five commutators as follows:

T1 = [Q1, Q2], T2 = [Q2, Q3 − T1], T3 = [Q1, Q3],
T4 = [Q1, T1], T5 = [Q1, 2T3 + T4],

v = Q1 + 1
12(Q3 − T1) + 1

240T2 + 1
720T5.

At the moment we have no systematic ways of reducing an expression to the smallest
possible number of commutators.
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(c) Explicit RKMK methods for general equations on manifolds

In the general equation (1.10), where f depends on y, it is not possible to solve
implicit RK equations a priori in an FLA. We will therefore consider explicit RK
methods for this problem. In order to optimize the computation of dexp−1

ui as they
occur in (1.14), we shall find it useful to consider linear combinations of the ki which
are of a high order in the step size h. Such linear combinations are of course method
dependent and to find them, we shall begin by considering the corrected stages k̃i
rather than the ki. Recall that the k̃i are the stages of a classical RK method used
in the standard way.

Let (A, b) denote an explicit Runge–Kutta (ERK) method. Here A is an s × s
matrix whose elements aij = 0, j > i, and b is an s-vector. For the differential
equation u′ = f̃(u) we apply (A, b) as follows in order to proceed to the solution
from u0 to u1:

ui = u0 +
i−1∑
j=1

aijk̃j ,

k̃i = hf̃(ui),

 i = 1, . . . , s,

u1 = u0 +
s∑
i=1

bik̃i.

We now look for linear combinations of k̃1, . . . , k̃m of the highest possible order in
the step size h, i.e. for any fixed m such that 1 6 m 6 s, we seek r = (r1, . . . , rm),
such that

m∑
i=1

rik̃i = O(hq+1) (4.4)

for q as large as possible. For this purpose we need to use some theory of order
conditions for RK methods.

It is well known (see, for example, Hairer et al. 1993) that y1 as well as each of
the stages k̃i has a B-series. This is an expansion, which we write in the form

B(a, y) =
∑
t∈T

hρ(t)

ρ(t)!
a(t)F (t)(y). (4.5)

Here T is the set of rooted trees, ρ(t) is the number of nodes in the rooted tree t,
a assigns to each t ∈ T a real number and F (t) depends on the derivatives of the
function f̃ and is called an elementary differential. The theory now tells us that there
are sequences ui, k̃i and y1 such that (formally)

ui = B(ui, y0), k̃i = B(k̃i, y0), y1 = B(y1, y0), (4.6)
for i = 1, . . . , s. Hairer et al. (1993) provide the following recursion formulae for ki
and ui:

ui(∅) = 1, ui(t) =
s∑
j=1

aijk̃j(t),

k̃i(τ) = 1, k̃i(t) = ρ(t)ui(t1) · · ·ui(tm),

y1(∅) = 1, y1(t) =
s∑
j=1

bjk̃j(t),


(4.7)
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where the trees t1, . . . , tm are such that t = [t1, . . . , tm] and τ is the tree with a single
node. Given any method (A, b), we can, in view of (4.7) and (4.5), derive conditions
such that (4.4) holds for q as large as possible. Before we proceed to specific examples,
recall that we really need the ki rather than the k̃i to satisfy (4.4), hence the following
result will be useful to us.

Proposition 4.1. In the RKMK method (1.14) assume that r = (r1, . . . , rm)T is
such that (4.4) holds. Then

m∑
i=1

riki = O(hq+1). (4.8)

Proof . We have from (4.4)–(4.6) that
m∑
i=1

ri k̃i(t) = 0 for all t such that ρ(t) 6 q. (4.9)

We compute

ki = dexpui(k̃i) = k̃i + 1
2 [ui, k̃i] + · · ·+ 1

(q + 1)!
[ui, [. . . , [ui,︸ ︷︷ ︸

q times

k̃i]]] + · · · . (4.10)

We now substitute the B-series for ui and k̃i in the general term of (4.10), where
q > 1, to obtain

1
(q + 1)!

[∑
t1∈T

hρ(t1)

ρ(t1)!
ui(t1)F (t1),

[
. . . ,

[∑
tq∈T

hρ(tq)

ρ(tq)!
ui(tq)F (tq),

∑
tq+1∈T

hρ(tq+1)

ρ(tq+1)!
k̃i(tq+1)F (tq+1)

]]]
.

From this expression, we collect all terms of a given order ` in the step size h; thus,
we sum over all ordered (q+1)-plets (t1, . . . , tq+1), such that ρ(t1)+ · · ·+ρ(tq+1) = `:∑
`>q+1

h`

(q + 1)!

∑
t1,...,tq+1

ui(t1) · · ·ui(tq)
ρ1! · · · ρq+1!

k̃i(tq+1)[F (t1), [. . . , [F (tq), F (tq+1)]]]. (4.11)

Now define the compound tree (of t1, . . . , tq, tq+1) as follows:

t =

{
[t1, . . . , tq], if tq+1 = τ,

[t1, . . . , tq, tq+1,1, . . . , tq+1,µ], if tq+1 = [tq+1,1, . . . , tq+1,µ].

It follows from (4.7) that (4.11) reduces to∑
`>q+1

h`

(q + 1)!

∑
t∈T`

k̃i(t)
∑

σ∈Sq+1

Kσ [F (tσ(1)), [. . . , [F (tσ(q)), F (tσ(q+1))]]],

where T` is the set of rooted trees with precisely ` nodes, Sq+1 is the symmetric
group of q+ 1 elements and Kσ is a constant that depends only on σ and on the ρi.
The result now follows readily from (4.9). �
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We next consider how to derive conditions on r for which (4.4), and thereby (4.8),
holds. We enumerate the rooted trees increasingly in terms of their order, i.e. if
ρ(ti) < ρ(tj) then i < j, and for each q > 1 let Nq be the number of trees t such that
ρ(t) 6 q. We define K̃q,m to be the Nq ×m matrix whose ij element is k̃j(ti). We
see that if (4.9) is to hold for some non-zero r ∈ Rm, it is necessary and sufficient
that

rank K̃q,m < m.

Note that since we are considering only explicit methods, the first m∗ < m columns of
K̃q,m are precisely those of K̃q,m∗ . Therefore, it is clear that the highest attainable q
in (4.4) is obtained for m = s, the number of stages of the method. From theorem 2.4
of Owren & Zennaro (1991) we deduce the following.

Proposition 4.2. Let (A, b) be an ERK method of order p and assume that the
corresponding matrix K̃p,s is of rank s∗ < s. Then there exists a method (A∗, b∗)
with s∗ stages of order p.

All of the most popular ERK methods have the property that the corresponding
matrix K̃p,s has full rank, and for such methods we have the upper bound q 6 s in
(4.4). This means that it suffices to consider the matrix K̃p−1,s (and its submatrices).
Likewise, we easily see that (4.4) can be satisfied if Nq 6 m, and we thus have also a
lower bound for the largest attainable q. One should also note that all stage values
k̃i are O(h); hence, with m = 1 we obtain k̃1 = O(h), i.e. q = 0 in (4.4).

Example. We begin by considering RK4, the ‘RK method’ with Butcher tableau:

0
1/2 1/2
1/2 0 1/2
1 0 0 1

1/6 1/3 1/3 1/6

.

We need only consider K̃3,4 and its submatrices

K̃3,4 =


1 1 1 1
0 1 1 2
0 3/4 3/4 3
0 0 3/2 3

 ,
q\m 1 2 3 4

1 0 1 2 3
2 0 0 1 2
3 0 0 0 0

.

To the right we have listed the dimensions of the kernel of the submatrices K̃q,m for
the interesting values of q and m. The numbers in the table give, for each m, the
number of independent vectors r ∈ Rm that can be used to satisfy (4.4) for each
q = 1, 2, 3. We may now define quantities Q1, Q2, Q3, Q4 as follows with the given
order in the step size h, thanks to proposition 4.1:

Q1 = k1 = O(h),

Q2 = k2 − k1 = O(h2),

Q3 = k3 − k2 = O(h3),

Q4 = k1 − 2k2 + k4 = O(h3).

 (4.12)

In order to approximate dexp−1
ui (ki) as it appears in (1.14), we use again the expan-

sion (1.13), but by rephrasing the algorithm in terms of Q1, . . . , Q4 it is now only
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necessary to retain terms of order O(hq), q 6 4. Consider the graded FLA gener-
ated by Q1, . . . , Q4 with grades w(Q1) = 1, w(Q2) = 2, w(Q3) = 3, w(Q4) = 3, as
suggested by (4.12). The associated polynomial p of (3.1) is thus given as p(T ) =
1 − T − T 2 − 2T 3, whose roots are T1 = 1

2 , T2,3 = exp(±2
3πi). We can apply the

formula (3.2) to find the following dimensions νn of the homogeneous components of
the FLA up to n = 10:

n 1 2 3 4 5 6 7 8 9 10
νn 1 1 3 3 6 9 18 30 56 99 .

Note also that we can write p(T ) = (1−2T )(1−T 3)(1−T )−1; thus, according to (3.5)
the roots T2,3 have no effect on the homogeneous dimensions νn when n > 4. For
such n the dimensions are the same as for the FLA generated by two elements, both
of grade 1. For the present application, only the first four entries of the above table
are of significance, we can easily find a corresponding Hall basis of eight elements,
namely

Q1, Q2, Q3, Q4, [Q1, Q2], [Q1, Q3], [Q1, Q4], [Q1, [Q1, Q2]].

There are thus at most four brackets that need to be computed to evaluate (1.13) to
the sufficient order of accuracy. Using k1, . . . , k4, one needs instead to compute six
brackets, taking into account that for the first stage dexp−1

u1
is the identity transfor-

mation.
We write out the new version of the RKMK algorithm based on RK4. Note that

the ui needs only to be computed to the order q−1. To see this (consider the original
RKMK scheme (1.14)), it suffices to compute the corrected stages k̃i to the order of
the method. These are obtained by applying dexp−1

ui to ki and the ki are all O(h);
hence, the order of the error in ui is boosted by 1 after applying dexp−1

ui to ki. Thus
we drop all terms exceeding order 3 in ui and all terms exceeding 4 in v. This gives

u1 = 0,
k1 = hf(λ(u1, y0)), Q1 := k1,

u2 = 1
2Q1,

k2 = hf(λ(u2, y0)), Q2 := k2 − k1,

u3 = 1
2Q1 + 1

2Q2 − 1
8 [Q1, Q2],

k3 = hf(λ(u3, y0)), Q3 := k3 − k2,

u4 = Q1 +Q2 +Q3,
k4 = hf(λ(u4, y0)), Q4 := k4 − 2k2 + k1,

v = Q1 +Q2 + 1
3Q3 + 1

6Q4 − 1
6 [Q1, Q2]− 1

12 [Q1, Q4],
y1 = λ(v, y0).

Thus the number of commutators is reduced from six to two. Interestingly, this
scheme is almost identical to the original fourth-order algorithm derived in Munthe-
Kaas (1998) by other means.

We proceed to consider the much-used fifth-order method DOPRI5(4), which has
a total of seven stages, but where the seventh stage is used only for error estimation.
The Butcher tableau can be found in Hairer et al. (1993, p. 178). We compute K̃4,7
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and the dimensions of the kernel of the submatrices:

1 1 1 1 1 1 1
0 2

5
3
5

8
5

16
9 2 2

0 3
25

27
100

48
25

64
27 3 3

0 0 27
100

48
25

64
27 3 3

0 4
125

27
250

256
125

2048
729 4 4

0 0 27
250

256
125

2048
729 4 4

0 0 27
250

256
125

2048
729 4 4

0 0 0 96
25

3392
405

504
55 4


,

q\m 1 2 3 4 5 6 7
1 0 1 2 3 4 5 6
2 0 0 1 2 3 4 5
3 0 0 0 0 1 2 3
4 0 0 0 0 0 0 1

.

We find Q1, . . . , Q7 as follows:

Q1 = k1 = O(h),

Q2 = k2 − k1 = O(h2),

Q3 = k3 − 3
2k2 + 1

2k1 = O(h3),

Q4 = k4 − 6k3 + 5k2 = O(h3),

Q5 = k5 − 106
81 k4 + 128

243k3 − 53
243k1 = O(h4),

Q6 = k6 − 567
212k5 + 7

4k4 − 4
53k3 = O(h4),

Q7 = k7 − 176
105k6 + 17 253

8480 k5 − 71
48k4 + 568

3339k3 − 71
1440k1 = O(h5).


(4.13)

In this case the polynomial (3.1) takes the form

p(T ) = 1− T − T 2 − 2T 3 − 2T 4 − T 5 = [(1− T 4)(1− T 2)−1](1− T − 2T 2 − T 3).

It is interesting to see that for n > 4 the dimensions νn of the graded FLA gener-
ated by Q1, . . . , Q7 coincide with those of the graded FLA generated by elements
Q′1, . . . , Q

′
4 having weights 1, 2, 2, 3.

A Hall basis for elements up to order 5 based on Q1, . . . , Q7 is

Q1, Q2, Q3, Q4, Q5, Q6, Q7,

[Q1, Q2], [Q1, Q3], [Q1, Q4], [Q1, Q5], [Q1, Q6], [Q2, Q3], [Q2, Q4],
[Q1, [Q1, Q2]], [Q1, [Q1, Q3]], [Q1, [Q1, Q4]], [Q2, [Q1, Q2]], [Q1, [Q1, [Q1, Q2]]].

In other words, at most 12 brackets are involved in the algorithm. In comparison,
using the expansion (1.13) one would need 24 brackets.

The modified RKMK algorithm is as follows:

for j = 1:7,
uj is determined from (4.14)
kj = hf(λ(uj , y0))
Qj is determined from (4.13)
Form all new brackets involving Q1, . . . , Qj from the set above

end for
Set y1 = λ(v, y0) = λ(u7, y0).
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The calculation of u1, . . . , u7 is lengthy but straightforward. We give only the final
result. As before, we ignore all terms of order exceeding 4 in ui and exceeding 5 in v:

u1 = 0,

u2 = 1
5Q1,

u3 = 3
10Q1 + 9

40Q2 − 9
400 [Q1, Q2] + 3

4000 [Q1, [Q1, Q2]],

u4 = 4
5Q1 + 8

5Q2 + 32
9 Q3 − 2

75 [Q1, Q2]− 8
15 [Q1, Q3]− 73

2250 [Q1, [Q1, Q2]],

u5 = 8
9Q1 + 160

81 Q2 + 2795
346 Q3 − 212

729Q4 + 628
2187 [Q1, Q2]

− 1118
865 [Q1, Q3] + 424

3645 [Q1, Q4]− 157
1297 [Q1, [Q1, Q2]],

u6 = Q1 + 5
2Q2 + 3395

396 Q3 − 7
88Q4 − 433

1583Q5 + 4
33 [Q1, Q2]

− 455
264 [Q1, Q3] + 7

80 [Q1, Q4]− 194
1393 [Q1, [Q1, Q2]],

v = Q1 + 5
2Q2 + 115

36 Q3 + 11
24Q4 + 189

6784Q5 + 11
84Q6 − 5

12 [Q1, Q2]

− 55
72 [Q1, Q3]− 7

48 [Q1, Q4]− 407
8181 [Q1, Q5]− 11

168 [Q1, Q6]

− 25
36 [Q2, Q3]− 5

24 [Q2, Q4] + 5
216 [Q1, [Q1, Q3]] + 1

144 [Q1, [Q1, Q4]]

− 5
48 [Q2, [Q1, Q2]] + 1

144 [Q1, [Q1, [Q1, Q2]]],

u7 = v.


(4.14)

One may ask if the use of such transformations described above will generally lead
to less expensive approximation of dexp−1

u . This is not necessarily so, because the
expansion (1.13) does not contain brackets from a full Hall basis based on, say,
u1, . . . , us, k1, . . . , ks; all brackets of n elements involve precisely n − 1 occurrences
of ui and one of ki, there are no ‘mixed terms’. To put this discussion to a test, we
computed the transformation for the RKF78 method, which has 13 stages. We found
that the corresponding graded FLA involve 133 brackets of degree not exceeding 8,
whereas the direct computation of (1.13) involves only 72 brackets. It seems that,
unless this new approach is combined with some other reduction techniques, we can
only expect it to be less expensive for low- and moderate-order methods.

(d) Explicit RKCG methods for general equations on manifolds

The methods proposed by Crouch & Grossman (1993) to a large extent use com-
positions of vector fields; see (1.6) and (1.7). The idea is to approximate these com-
positions of exponentials, say

exp(vrhFr) ◦ · · · ◦ exp(v1hF1),

by the exponential of a single vector field F̂ obtained by truncating the BCH for-
mula (1.5).

In a similar way as for the RKMK methods we will consider linear combinations
of the vector fields Fi such that for each m, 1 6 m 6 s, we find r = (r1, . . . , rm),
1 6 m 6 s, such that

m∑
i=1

ri hFi = O(hq+1) (4.15)
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for q as large as possible. We need to use the order theory as developed in Owren &
Marthinsen (1999), and there are more conditions to be fulfilled than in the RKMK
case. Again, the attainable order q in (4.4) depends on the particular method that is
used. Suppose that we have found an invertible linear transformation of the vector
fields hF1, . . . , hFs to yield vector fields Q1, . . . , Qs such that each Qi depends only
on hF1, . . . , hFi. To verify the existence of such a transformation it suffices to take the
identity transformation. Suppose that the positive integers q1, . . . , qs are such that
Qi = O(hqi). Let g be the graded FLA generated by Q1, . . . , Qs, where w(Qi) = qi.
We expand (4.4) by the BCH formula, substitute for each hFi the linear combination
of the Qi determined from the inverse of the above transformation, and write the
resulting expression in terms of the Hall basis. We can discard all terms with degree
greater than the order of the method.

Example. We consider the fourth-order five-stage RKCG method given in Owren
& Marthinsen (1999). With the coefficients of that particular method, we find that
we can define Q1, . . . , Q5 as follows:

Q1 = hF1 = O(h),

Q2 = hF2 − hF1 = O(h2),

Q3 = hF3 − 1
9(4 + 2κ+ κ2)hF2 + 1

9(−5 + 2κ+ κ2)hF1 = O(h3),

Q4 = hF4 + 1
9(−2 + 2κ+ κ2)hF2 − 1

9(7 + 2κ+ κ2)hF1 = O(h3),

Q5 = hF5 + (κ2 − 1)hF4 − (κ2 − 1)hF3 − hF1 = O(h4),

where κ = 21/3. We invert these equations to find

hF1 = Q1,

hF2 = Q1 +Q2,

hF3 = Q1 + 1
9(4 + 2κ+ κ2)Q2 +Q3,

hF4 = Q1 − 1
9(−2 + 2κ+ κ2)Q2 +Q4,

hF5 = Q1 + 2
3Q2 + (κ2 − 1)Q3 − (κ2 − 1)Q4 +Q5.

We may thus consider the graded FLA based on the elementsQ1, . . . , Q5 with weights

element Q1 Q2 Q3 Q4 Q5

weight 1 2 3 3 4 .

We now compute the Hall basis and exclude terms whose degree exceeds 4 (the order
of the method) and we find that the set

S = {Q1, Q2, Q3, Q4, Q5, [Q1, Q2], [Q1, Q3], [Q1, Q4], [Q1, [Q1, Q2]]}
constitutes all terms of order less than or equal to 4.

To take a step with this Crouch–Grossman method, we begin as before by setting
Y1 = yn and computing

F1 = FY1 =
∑
i

fi(Y1)Ei.

Compute Y2 = exp(ha21Fi)y0 and then

F2 = FY2 =
∑
i

fi(Y2)Ei.
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For each Yi, i > 3 we must compute

Yi = exp(hai,i−1Fi−1) ◦ · · · ◦ exp(hai1F1)y0 =: exp(hF̂i−1)y0

and finally

y1 = exp(hbsFs) ◦ · · · ◦ exp(hb1F1)y0 =: exp(hF̂ )y0.

The vector fields hF̂i−1, hF̂ can be approximated to the order of the method, by
means of the BCH formula, the vector fields Qi are substituted into the resulting
expressions and we retain only the terms belonging to the set S. As an example we
compute here hF̂2:

hF̂2 = a32hF1 + a32hF2 + 1
2a31a32[hF2, hF1] + 1

12a
2
31a32[hF1, [hF1, hF2]]

+ 1
12a31a

2
32[hF2, [hF2, hF1]] +O(h5)

= a31Q1 + a32(Q1 +Q2) + 1
2a31a32[Q1 +Q2, Q1]

+ 1
12a

2
31a32[Q1, [Q1, Q1 +Q2]]

+ 1
12a31a

2
32[Q1 +Q2, [Q1 +Q2, Q1]] +O(h5)

= c3Q1 + a32Q2 − 1
2a31a32[Q1, Q2]

+ 1
12a31a32(a31 − a32)[Q1, [Q1, Q2]] +O(h5).

The other compositions are computed in a similar way and we obtain vector fields
of the form

hF̂i =
∑
S∈S

αiSS +O(h5), i = 2, . . . , s− 1,

hF̂ =
∑
S∈S

βSS +O(h5).

The exact expressions for the coefficients αiS and βS are fairly complicated; we prefer
to give the non-zero ones below as decimal numbers:

S\i α2S α3S

Q1 0.13512071919596576e + 01 −0.35120719195965763e + 00
Q2 0.60858695853450102e + 00 0.41115497228062601e− 01
Q3 −0.44926882389532706e + 01

[Q1, Q2] −0.22597449460319862e + 00 −0.91204491514594451e + 00
[Q1, Q3] 0.93031915958380413e + 01

[Q1, [Q1, Q2]] 0.50480169255712481e− 02 0.13271581092769965e + 01
S\i α4S βS
Q1 0.10000000000000000e + 01 0.10000000000000000e + 01
Q2 0.33333333333333333e + 00 0.33333333333333333e + 00
Q3 −0.10764581018542984e + 01 0.22124666701222105e + 00
Q4 −0.35120719195965763e + 00 −0.57245385897187868e + 00
Q5 0.67560359597982881e + 00

[Q1, Q2] −0.31635294839677244e + 00 −0.55555555555555555e− 01
[Q1, Q3] 0.14956699006655000e + 01 −0.48950087664016622e− 01
[Q1, Q4] −0.23727684182192271e + 00 0.48950087664016622e− 01

[Q1, [Q1, Q2]] 0.15744757362188735e + 00
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5. Open problems

We have been investigating reductions in commutator computations by changing
from ungraded to graded bases in the FLA. There are, however, other optimization
issues related to changing bases that have not been addressed. Consider the BCH
computation, Z = bch(X,Y ) in the non-graded case. The Witt formula (2.1) for s =
2 gives an upper bound on the number of commutators. The actual number of commu-
tators becomes lower than this, due to the symmetry bch(X,Y ) = −bch(−Y,−X),
and possibly also due to other symmetries. However, the actual savings due to sym-
metries depend on the choice of basis, and for this particular computation the Lyndon
basis gives slightly fewer commutators than the Hall basis. Further symmetry reduc-
tions are possible by doing other transformations of the basis. This is addressed
in Kolsrud (1993) and Oteo (1991). Reduction of commutators by systematic use
of symmetries seems to be an open but important question, both for ungraded and
graded FLAs.

Another important problem for future research is the optimization in the case of
special (non-free) Lie algebras, that is when more information about the structure
constants of the algebra is available. Such optimization problems may turn out to be
computationally hard to solve.
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